[PHY01] Grundlagen der Aerodynamik
Zur Vervollständigung der Seite steht die Präsentation zur Verfügung. Der Wiki-Artikel hier wird zunächst in Form von Stichpunkten aufgebaut werden, damit die wesentlichen Inhalte schon mal vorhanden sind, bevor diese Stichpunkte schrittweise in Fließtext ausformuliert werden.
Dieses Modul aus der Kategorie: Physik des Fliegens behandelt die Grundlagen der Aerodynamik, eines der beiden Teilgebiete der Flugphysik (das zweite Teilgebiet stellt die Flugmechanik dar, die im folgenden Modul Grundlagen der Flugmechanik (PHY02) behandelt wird). Dafür werden keine anderen Module vorausgesetzt.
Die Aerodynamik als Teilgebiet der Strömungsmechanik befasst sich ganz allgemein mit Strömungen von Gasen, wobei dieses Modul sich mit der Luftströmung um ein Flugzeug beschäftigt. Wesentliche Aspekte sind dabei die Entstehung der beiden von der Strömung auf das Flugzeug ausgeübten Kräfte Auftrieb und Widerstand sowie deren Einflussfaktoren. Zunächst werden jedoch einige allgemeine Grundlagen erläutert bevor auf diese beiden Kräfte genauer eingegangen wird. Als Vorbemerkung sei erwähnt, dass zur Entstehung des Auftriebs (und auch zu anderen Aspekten der Flugphysik) einige falsche Theorien sehr weit verbreitet sind. Obwohl diese Theorien die Entstehung des Auftriebs nicht korrekt erklären, sollen hier trotzdem drei typische weit verbreitete falsche Theorien kurz erläutert werden. Dies ist aus zwei Gründen sinnvoll: Erstens kann dadurch Verwirrung vermieden werden, wenn man beim Nachlesen in der Literatur auf eine dieser falschen Theorien stößt; zweitens hilft ein genaueres Verständnis, warum diese Theorien die Entstehung des Auftriebs nicht korrekt erklären, auch zu verstehen, wie sich die Entstehung des Auftriebs denn tatsächlich erklären lässt.
Theorie 1: Wird demnächst vervollständigt.
Theorie 2: Wird demnächst vervollständigt.
Theorie 3: Wird demnächst vervollständigt.
Allgemeine Grundlagen
Es folgen zunächst einige ausgewählte Begriffsdefinitionen und andere allgemeine Grundlagen, die für das Verständnis der Inhalte in diesem Modul von besonderer Bedeutung sind. Bei den Definitionen ist hier weniger die exakte (mathematische) Definition relevant, sondern eher das darauf basierende gedankliche Modell, wie man sich das Verhalten von Strömungen vorstellen kann.
Bahnlinien und Stromlinien:Stromlinien
Strömungen werden oftmals durch verschiedene Arten von charakteristischen Linien bildlich dargestellt, von denen zwei hier näher erläutert werden sollen.
Die Abbildung auf der linken Seite zeigt sogenannte Bahnlinien für eine beispielhafte Strömung bestehend aus drei Luftteilchen. Die Bahnlinien stellen dabei die aufgezeichnete Bewegung der einzelnen Teilchen dar, was man sich so vorstellen kannkann, als würden die Teilchen bei ihrer Bewegung eine sichtbare Spur hinterlassen. Wie im Beispiel gezeigt, können Bahnlinien von verschiedenen Teilchen sich kreuzen - dies bedeutet jedoch nicht zwangsläufig, dass die Teilchen sich dort treffen, da sie den Kreuzungspunkt auch zu unterschiedlichen Zeiten erreichen können. Wie anhand des untersten Teilchens verdeutlicht, kann eine Bahnlinie auch sich selbst kreuzen, wenn ein Teilchen sich zum Beispiel im Kreis bewegt und den Kreuzungspunkt zu einem späteren Zeitpunkt wieder passiert. Die Verwendung von Bahnlinien für die bildliche Darstellung einer Strömung rückt also die einzelnen LuftteilchenTeilchen in den Fokus - diese Art der Darstellung wird jedoch in der Aerodynamik selten verwendet, da in den üblicherweise betrachteten Luftmassen die Anzahl der Teilchen so enorm groß ist und die Teilchen selbst so enorm klein sind, dass die strömende Luftmasse sich besser wie ein sogenanntes "Kontinuum" beschreiben lässt (also wie eine zusammenhängende "zähe Masse") als wie ein loser Haufen von Teilchen.
Ein Beispiel, bei dem tatsächlich die Darstellung einer Strömung mit Hilfe von Bahnlinien sinnvoll ist, ist ein Raumschiff im Weltall. Dort ist prinzipiell ein Vakuum (also ein luftleerer Raum) vorhanden und nur ganz vereinzelt begegnet das Raumschiff einem Luftteilchen, so dass die Bewegung dieser einzelnen Teilchen sinnvollerweise mit Hilfe von Bahnlinien dargestellt werden kann. Sobald man sich allerdings in der Atmosphäre befindet (und dies gilt auch für die dünnen Luftschichten in der oberen Atmosphäre), findet man so viele Luftteilchen dicht aneinander gedrängt, dass die Wechselwirkungen zwischen den Teilchen für das Verhalten der Strömung wichtiger sind als die Eigenschaften der Teilchen selbst.
Daher wird in der Flugphysik üblicherweise eine andere Art der Darstellung bevorzugt, um Strömungen zu beschreiben: Die sogenannten Stromlinien. Dabei wird die Strömung als ein Vektorfeld dargestellt, wobei die Stromlinien so definiert sind, dass in jedem Punkt des Vektorfeldes der jeweilige Geschwindigkeitsvektor tangential an der Stromlinie anliegt, wie in der Abbildung auf der rechten Seite dargestellt. Diese mathematische Definition steht hier jedoch nicht im Vordergrund, sondern das Verständnis der zugrunde liegenden Modellvorstellung. Der entscheidende Unterschied ist, dass bei der Darstellung einer Strömung mit Hilfe von Stromlinien im Gegensatz zu Bahnlinien nicht die einzelnen Teilchen im Vordergrund stehen, sondern die Strömung als Kontinuum betrachtet wird. Bei der Darstellung einer Strömung durch Bahnlinien ist die Anzahl der Bahnlinien durch die Anzahl der betrachteten Teilchen vorgegeben, da es für jedes Teilchen genau eine zugeordnete Bahnlinie gibt - im Gegensatz dazu kann bei einer Darstellung durch Stromlinien die Anzahl der Stromlinien beliebig festgelegt werden und hängt nur von der gewünschten räumlichen Auflösung ab. In der Abbildung auf der rechten Seite könnte beispielsweise die Strömung mit einer feineren Auflösung dargestellt werden, indem zwischen den Pfeilen und Linien noch weitere Pfeile und Linien eingezeichnet werden. Theoretisch können zwischen zwei Stromlinien unendlich viele weitere Stromlinien eingezeichnet werden; in der Praxis muss also eine sinnvolle Anzahl der Stromlinien selbst gewählt werden. Ein weiterer Unterschied zwischen Stromlinien und Bahnlinien ist, dass Stromlinien sich im Gegensatz zu Bahnlinien per Definition niemals kreuzen können, da ansonsten im Kreuzungspunkt der Geschwindigkeitsvektor nicht eindeutig definiert wäre. Die Bedeutung dieser Eigenschaft wird im folgenden Abschnitt bei der Betrachtung einer sogenannten Stromröhre deutlich werden.
Zusammenfassend lässt sich also sagen: Auch wenn Luft bei genauerem Hinsehen tatsächlich aus einer Vielzahl von kleinen Teilchen besteht, so erzielt man mit der Modellvorstellung einer "zähen Masse" in den meisten Anwendungsfällen ein deutlich besseres Verständnis für das Verhalten einer Luftströmung als mit der Modellvorstellung eines losen Haufens von Teilchen.
Stromröhre:hre XYZ
Grenzschicht und Außenströmung: XYZ
Anstellwinkel: XYZ
Einstellwinkel: XYZ
Schiebewinkel: XYZ
Auftrieb: XYZ
Widerstand: XYZ
Wird demnächst vervollständigt.hinzugefügt.
[Kontinuitätsgleichung und Bernoulli-Gleichung kurz erklären]
Grenzschicht und Außenströmung
Wird demnächst hinzugefügt.
Anstellwinkel, Einstellwinkel und Schiebewinkel
Wird demnächst hinzugefügt.
Auftrieb und Widerstand
Wird demnächst hinzugefügt.
Auftrieb
In diesem Abschnitt wird genauer auf den Auftrieb an einer Flugzeugtragfläche eingegangen. Dabei wird mit dem Begriff Auftrieb hier stets der dynamische Auftrieb bezeichnet - in Abgrenzung zum statischen Auftrieb, der beispielsweise von Ballonen und Luftschiffen genutzt wird.
Grundprinzip des dynamischen Auftriebs
Wird demnächst hinzugefügt.
[Druckpunktwanderung kurz erwähnen]
[Anfahrwirbel, Zirkulation und Wirbelschleppen kurz erwähnen]
Einflussfaktoren des Auftriebs
Wird demnächst hinzugefügt.
Einflussfaktoren des Auftriebsbeiwertes
Wird demnächst hinzugefügt.
Strömungsabriss
Wird demnächst hinzugefügt.
Widerstand
Wird demnächst hinzugefügt.
[Einteilung des Widerstands kurz erwähnen]
Induzierter Widerstand und Nullwiderstand
Wird demnächst hinzugefügt.
Einflussfaktoren des Widerstands
Wird demnächst hinzugefügt.
Einflussfaktoren des Widerstandsbeiwertes
Wird demnächst hinzugefügt.
[Typische Nullwiderstandsbeiwerte besonders betrachten]
[Induzierten Widerstandsbeiwert besonders betrachten]
Widerstandspolare
Wird demnächst hinzugefügt.